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Figure 1: A touch display is integrated in the stem of a large cardboard tree. The glowing “leaves” of the tree are yellow and red
to evoke associations with late summer in Aarhus. A person can input how they have used GenAI in research and the screen
will show an estimate of the CO2e that this research has cost. A small thermal printer will print two receipts of their result: one
to hang on the tree, and one to bring home. The receipts hanging on the tree will constitute a growing body of evidence for the
𝐶𝑂2st of GenAI use for HCI research. The user can exchange their CO2e result into the number of tree seeds that, if grown for
the next 10 years, would be enough to offset their carbon footprint.

Abstract
Increased usage of generative AI (GenAI) in Human-Computer
Interaction (HCI) research has caused a sustainability crisis in com-
puting, due to the excessive power consumption of developing and
running these models. Energy consumption causes a massive car-
bon footprint. The exact energy usage and and subsequent carbon
emissions are difficult to estimate in HCI research because HCI re-
searchers most often use cloud-based services where the hardware
and its energy consumption are hidden from plain view. The HCI
GenAI 𝐶𝑂2st Calculator is a tool designed specifically for the HCI
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research pipeline, to help researchers estimate the energy consump-
tion and carbon footprint of using generative AI in their research,
either a priori (allowing for mitigation strategies or experimental
redesign) or post hoc (allowing for transparent documentation of
carbon footprint in written reports of the research).

CCS Concepts
• Computing methodologies → Artificial intelligence; • General
and reference → Estimation; • Hardware → Impact on the
environment.
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1 Introduction and motivation
The extensive use of generative artificial intelligence (GenAI) mod-
els in research worldwide has a significant carbon footprint. In
recent years, the electricity use by Meta, Amazon, Microsoft, and
Google — main providers of cloud compute services — has more
than doubled, and the the electricity consumption by global data
centers has increased by 20-40% [10, 19]. Irish data centers are on
the path to derail the entire country’s climate targets [1].

In this paper we present the HCI GenAI𝐶𝑂2st Calculator : a calcu-
lator designed specifically for Human-Computer Interaction (HCI)
researchers to estimate the operational carbon emissions due to
electricity consumption of GenAI use in their research. When re-
searchers explore, test, and prototype with GenAI, their use causes
CO2e consumption. Additionally, HCI researchers create a massive
downstream carbon footprint of GenAI by integrating these tech-
nologies into more systems, processes, and end user interactions.

With this calculator, we hope to make two contributions to the
HCI community: First, we wish to enable HCI researchers to be
fully transparent of their own research and acknowledge their own
climate impact. Second, we hope to evoke critical thinking about
the importance and necessity of HCI research conducted with the
use of GenAI.

2 Background — sustainable HCI and carbon
tracking

In 2007, Eli Blevis coined the term Sustainable Interaction Design
(SID) and argued that “sustainability can and should be a central
focus of interaction design” [5]. This perspective includes the re-
sponsible audit of tools we use to conduct our research. The large-
scale adoption of GenAI tools is more than likely to contribute to
the replication of “our modern society’s overconsumption habits of
natural resources within the digital space” [26].

Research on sustainable AI and machine learning (ML) generally
fall into two camps: AI and ML for sustainability and sustainabil-
ity of AI and ML, see e.g. [14, 27]. While a growing number of
publications are directed towards AI for the United Nations (UN)
Sustainable Development Goals, there is little research addressing
the, often hidden, environmental costs of AI [14]. These efforts are
significantly higher in ML and AI communities than in HCI. For ex-
ample, because a model’s architecture can affect how much power
it consumes [3, 8], different more energy-efficient approaches in
the IT-infrastructure, data, modeling, training, deployment, and
evaluation of ML models have been suggested — see Bartoldson
et al. [4], Mehlin et al. [20]. However, the inference stage or use of
these models happens at a far greater scale; as of February 2025,
ChatGPT alone boasted more than 400 million weekly active users
[23].

There are several carbon and energy tracking tools available for
ML/AI methods — Wright and colleagues discuss pros and cons of

seven of these [27]. None of them, however, focus on HCI research,
andmany of their metrics do notmake sense in anHCI context (such
as specifying hardware used for computation and the ML tasks per-
formed). Similarly, mitigation strategies directed at the architecture
and training of models are rarely relevant to researchers outside ML,
who rely on off-the-shelf, multi-purpose models. This exacerbates
the sustainability issue for HCI researchers, since multi-purpose,
generative architectures (such as the GPT models) are orders of
magnitude more expensive than task-specific systems [19]. The
lack of transparency from large multi-purpose model providers
(such as OpenAI, Microsoft, and Google) about critical data, such
as model training and hosting, complicates the issue.

3 The HCI 𝐶𝑂2st Calculator
The HCI𝐶𝑂2st Calculator is, at its core, a calculator through which
the researcher can input how they used GenAI in their research,
which model they used, how much they used it, and the calculator
will give an estimate of the carbon footprint in kgCO2e, this GenAI
research use has cost.

The physical exhibition of the calculator (see Figure 1) is an
interactive piece, integrating a touch display in the stem of a large
cardboard tree which has balloons for leaves. The glowing “leaves”
of the tree are yellow and red to evoke associations with late sum-
mer/fall in Aarhus. A person can input how they have used GenAI
in research — we will suggest that they take departure in research
conducted for Aarhus Decennial 2025 if they have used GenAI in
work submitted to the conference — and the screen will show an
estimate of the CO2e that this research has cost. The user can then
print their result and hang their paper receipt on the tree stem
(like someone might carve their names into the bark of a physical
tree). The receipts hanging on the stem will constitute a growing
body of evidence of our lasting carbon footprint. After this, the user
can exchange their resulting CO2e number for a number of Danish
native tree seeds that, if planted and grown for the next 10 years,
will offset their carbon footprint reported in this research.

The tree that will house the calculator for the physical demo is
chosen as an exhibition piece to manifest the otherwise abstract
relationship between computing use and its direct impact on climate
and nature. Trees are one of our main sources for reducing CO2e in
the atmosphere, and we hope the tree will inspire people to consider
the value of natural resources consumed in the pipeline that feeds
our technological ecosystem.

3.1 Front-end and design
Based on Inie et al. [12], we create a flow that begins with choos-
ing which research phase the use was part of (Research planning,
Prototyping & building, Evaluation & user studies, Data collec-
tion, Analysis & synthesis, Dissemination & communication, or
AI model training or fine-tuning). Based on a user’s selection of
research phase, the input fields will change to reflect which factors
needs to be input to obtain an estimate.

The factors we use to calculate a credible estimate of CO2e con-
sumption of model use are: model type, usage numbers, and in-
put/output resolution (depending on the model type). If GenAI is
integrated into a prototype or used as part of a user study, we need
to know the number of test runs and number of interactions
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(a) For the Prototyping using GenAI function-
ality use type, the user can choose between
all model types.

(b) For the Customized chatbot type of use,
the model type is “locked” to text-to-text.

Figure 2: Screenshots from the interface, showing how the input fields change when the user chooses different research phases
and “stack” their use cases to account for the entire research pipeline.

with the system). However, not all of these factors are relevant to
all HCI research pipelines.

The goal is to translate the technical factors affecting the carbon
footprint of GenAI use into an interface that makes it easy for an
HCI researcher to audit their empirical research. The categorization
imposed by the calculator encourages reflection about different
GenAI uses that incur𝐶𝑂2st which the researcher had not thought
of, such as automatic transcription, automatic proofreading, or the
generation of images for slides for a conference presentation.

Figure 2 shows two examples from the calculator. We see that the
input fields are different when the Type of use is changed, mirroring
the direct relevance to HCI research and simplifying the input. We
attempt to limit the amount of choices, the user has to make to
simplify the interaction as much as possible.

The result of the calculation is shown in a colored box on top of
the page and updated when the user presses “Add use case”. Use
cases can be stacked because each research pipeline is likely to
incur several GenAI uses, e.g., one for prototyping, and one for
the subsequent user evaluation of a prototype, one for automatic
transcription of audio data, and so forth. The result in kgCO2e
is translated into equivalent numbers: km. driven in a gasoline-
powered car, number of minutes as a passenger on a commercial
airplane, and number of tree seedlings grown for 10 years. These

numbers are based on the EPA Greenhouse Gas Equivalencies Cal-
culator. 1 We will hand out native tree seeds to participants for
them to plant at home and thereby, over time, help “offset” their
carbon footprint. We would like for this demo to not just be an
informative gimmick, but to actually have a positive sustainability
impact for the people who interact with it.

3.2 Back-end and algorithms
At a high-level, for each task we have measured the energy con-
sumption for a single use (or prompt) denoted 𝐸𝑝 watt-hour (kWh).
Using an in-house set-up comprising an NVIDIA-RTX3090 GPU,
Intel-i7 processor with 32GB memory, we measured the energy
consumption for various models using Carbontracker [2], which
are reported in Table 1. The specific models shown in this table are
used as proxies for the different model types (text-to-text, text-to-
image, etc.) based on their popularity, ease-of-use, and availability
(open-source). These choices provide useful approximations of the
actual costs, which can vary between users due to differences in
models and hardware used.

1https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator
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Table 1: Energy consumption per interaction for different
model types.

Task Model 𝐸𝑝 (Wh)

Text-to-text Llama-3.1-Instruct [9] 0.004685
Text-to-image Stable-diffusion-XL [24] 0.001301
Audio-to-text Whisper [25] 0.006335
Text-to-Video AnimateDiff [17] 0.021742
Text-to-3D model Shap-E [13] 0.026320
Text-to-Audio MusicGen [7] 0.011418
Image-to-text BLIP [15] 0.003423
Image-to-image Instruct-Pix2Pix [6] 0.000885
Image-to-3D One-2-3-45 [18] 0.013010
Video-to-text XCLIP [21] 0.001040
Video-to-video RIFE [11] 0.026020
Audio-to-audio FreeVC [16] 0.006335
Image-to-video SadTalker [28] 0.026020

We have not included multi-modal models in the calculator,
but instead reduced them to the most computationally heavy pa-
rameters (which results in a conservative estimate). For example,
text+image-to-image becomes image-to-image or image+video-to-
image becomes video-to-image, and so forth. This is done partially
for simplicity of the interface, and partially to reduce our own
carbon footprint when reproducing experiments.

We aggregate the usage information based on the user input into
𝑁 , which is then used to estimate the overall energy consumption
per use-case: 𝐸 = 𝑁 · 𝐸𝑝 (kWh). This energy consumption is then
converted to the carbon footprint using the global average car-
bon intensity of 𝐶𝐼 = 0.481 (kgCO2e/kWh) [22]. The final carbon
footprint 𝐶 is estimated as: 𝐶 = 𝐶𝐼 · 𝐸 (kgCO2e).

4 Impact: awareness, transparency, and
mitigation

When planning research with GenAI there is a range of trade-offs
which the individual HCI researcher can make to reduce their car-
bon footprint. Many of these are opaque to a user of cloud-based
models, as the factors which increase 𝐶𝑂2st are not clear or open.
We intend for this system to have two practical impacts: First, to
raise awareness of the carbon footprint caused by GenAI as it is
typically used in HCI research, and second, enabling the HCI com-
munity to expect and increase transparency in reporting of research
carbon footprint. The online version of the calculator (available
at www.hcico2st.com) will enable HCI researchers to report the
estimated carbon footprint of their research in a research paper’s
ethical statement. Hopefully, both awareness and transparency will
lead to increased reflection upon researchers’ own practices and
potentially mitigation strategies for the planning of future experi-
ments.

The calculator will show that the energy consumption grows
almost linearly with the task load i.e., longer prompts or more
images or images of higher resolution cost more in energy. It will
show that the far most carbon intensive research use (aside from
developing, training and fine-tuning new models) on average is
large-scale open-ended generation of datasets, either for exploration
or evaluation. Through the demo, we will also refer to the webpage

of the calculator for concrete mitigation strategies for limiting
one’s carbon footprint when using GenAI in HCI research, such
as enforcing user limits on prompting or making visible counters
to show the user how many times they have prompted, refining
prompting strategies (reducing the need for several attempts), and
choosing task-specific rather than general-purpose models. We
hope the physical exhibition will spark discussion and downstream
use of this research tool.

5 Summary
This paper presents the HCI GenAI 𝐶𝑂2st Calculator, a system
designed to help HCI researchers estimate the carbon footprint of
using generative AI in their research. The interface is designed to
represent typical HCI pipelines, and the calculations performed by
the calculator are based on estimates derived from experiments run
on our own hardware. The calculator is intended to be exhibited in a
large cardboard tree with the receipts of different research pipelines
hanging from the branches, and the possibility of offsetting one’s
concrete energy expenses by receiving tree seeds to plant after the
conference. With this system, we hope to promote increased aware-
ness and transparency in the HCI community about the climate
impact of using GenAI in research.
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